CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment
نویسندگان
چکیده
Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.
منابع مشابه
Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance.
Carbon catabolite protein A (CcpA) is known to function as a major regulator of gene expression in different gram-positive organisms. Deletion of the ccpA homologue (saCOL1786) in Staphylococcus aureus was found to affect growth, glucose metabolization, and transcription of selected virulence determinants. In liquid culture, deletion of CcpA decreased the growth rate and yield; however, the eff...
متن کاملStaphylococcus aureus CcpA affects biofilm formation.
Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source,...
متن کاملCcpA mediates the catabolite repression of tst in Staphylococcus aureus.
Some clinical isolates of Staphylococcus aureus produce the superantigenic toxic shock syndrome toxin 1 (TSST-1), encoded by tst, located on pathogenicity islands. The expression of tst is complex and is influenced by environmental conditions such as pH, CO(2), and glucose. We identified a putative catabolite-responsive element (cre) in the promoter regions of all known tst genes, indicating th...
متن کاملCcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus aureus
Lactate Dehydrogenase 1 (Ldh1) is a key enzyme involved in Staphylococcus aureus NO·-resistance. Full ldh1-induction requires the presence of glucose, and mutants lacking the Carbon-Catabolite Protein (CcpA) exhibit decreased ldh1 transcription and diminished Ldh1 activity. The redox-regulator Rex represses ldh1 directly by binding to Rex-sites within the ldh1 promoter (P(ldh1)). In the absence...
متن کاملCcpA Regulates Arginine Biosynthesis in Staphylococcus aureus through Repression of Proline Catabolism
Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S. aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that staphylococci have multiple amino...
متن کامل